Future Architectural Directions

= Nodes are becoming much more powerful
* More processors/node
* More threads/processor
* Vector lengths are getting longer
* Memory hierarchy is becoming more complex
* Scalar performance is not increasing

Threading on the Node and Vectorization is
becoming more important

12/12/12 Supercomputing 2012 Nov 12, 2012 1

Today's Multi-Petascale Systems — Node Architecture

CRANY”

THE SUPERCOMPUTER COMPANY

Cores on the | Total Vector Length | Programming
node threading Model
Blue Waters (16) 32 32 8 (4) OpenMP/MPI/
Vector
Blue Gene Q 16 32 8 OpenMP/MPI/
Vector
Magna-Cours | (12) 24 (12) 24 4 OpenMP/MPI/
Vector
Titan (ORNL) 16 (16) 16 (768%*) (8) (4) (32) Threads/
Cuda/Vector
Intel MIC >50 >200 16 OpenMP/MPI/
Vector
Power 7 (?7?) 16 32 8 OpenMP/MPI/
Vector

* Nvidia allows oversubscription to SIMT units

THE SUPERCOMPUTER COMPANY

Vectorization is becoming more important

= ALL accelerated nodes require vectorization at a
good size to achieve reasonable performance

 Nvidia
e Intel M

= All compi
designed

Kepler 32 length
C >8

ers other than Cray’'s CCE were
for marginal vector performance, they

do not understand current tradeoffs
* Be sure to get listing indicating if loop
vectorizes

= User refactoring of loop is paramount in gaining
good performance on future systems

12/12/12

Supercomputing 2012 Nov 12, 2012 3

CRANY

THE SUPERCOMPUTER COMPANY

Memory Hierarchy is becoming more complex

= As processors get faster, memory bandwidth cannot keep
up
* More complex caches

* Non Uniform Memory Architecture (NUMA) for shared
memory on node

* Operand alignment is becoming more important

= Going forward this will become even more complex — two
memories within same address space
* Fast expensive memory
* Slow less expensive memory
* More about this later

12/12/12 Supercomputing 2012 Nov 12, 2012 4

Scalar performance is not getting better

= Consider Intel’s chips
* Xeon line with more cores per node using
traditional X86 instruction set
* MIC line with many more cores of slower
Processors

= Hosted system — Xeon with MIC

* Native mode — run complete app on the MIC

> Scalar performance will be an issue
> Non-vector code will be an issue

* Off Load mode — use Xeon as host, major

computation on MIC
» Memory transfer to and from Host will be an issue

12/12/12 Supercomputing 2012 Nov 12, 2012 5

Scalar Performance is not getting better

= Consider Nvidia approach

= | ooking at ARM chip as co-processor

* Once again scalar is far below state of the art
Xeon

= So why not build an Exascale system out of
Xeons or Power 7

* TOO MUCH POWER

12/12/12 Supercomputing 2012 Nov 12, 2012 6

Code Design Question?

= Should code designers be concerned with
memory management like that required to utilize
a hosted accelerator like XK7

YES

* This is not throw away work?

12/12/12 Supercomputing 2012 Nov 12, 2012 7

WHY??

= All systems will soon have a secondary memory
that is as large as we require; however, it will not
have high bandwidth to the principal compute
engine.

= There will be a smaller faster memory that will
supply the principal compute engine.

= \While system software may manage the two
memories for the user, the user will have to
manage these desperate memories to achieve
maximum performance

12/12/12 Supercomputing 2012 Nov 12, 2012 8

: , CRAYNY
So What is Heterogeneous Computing

m | believe it will have more to do with different
memories

* If doing scalar processing, application can

afford to access slower larger memory

> Scalar processing may be significantly slower than state-of-
the-art Xeon

* If doing high speed compute, application must
have major computational arrays in fast

memory

» Parallel vector processing need high memory bandwidth and
larger caches/registers

12/12/12 Supercomputing 2012 Nov 12, 2012 9

So how should we program for these new CRANY
systems

What to avoid

Excessive memory movement

* Memory organization is the most important analysis for
moving an application to these systems

Avoid wide gaps between operands
* Indirect addressing is okay, if it is localized

Avoid scalar code
e Think about Cyber 205, Connection Machine

Supercomputing 2012 Nov 12, 2012 12/12/12 10

So how should we program for these new o
systems

What to do — Good Threading (OpenMP)
Must do high level threading

Thread must access close shared memory rather
than distant shared memory

Load Balancing

What to do — Good Vectorization

Vectorization advantage allows for introducing
overhead to vectorize
» Vectorization of Ifs
Conditional vector merge (too many paths??)
Gather/scatter (Too much data motion??)
|dentification of strings

Supercomputing 2012 Nov 12, 2012 12/12/12 11

=AY
Why OpenMP? S

Given the success of OpenMP extensions for
accelerators, OpenACC and Intel’s OffLoad
Directives OpenMP offers an approach to develop a
performance portable application that targets ALL
future architecture

Supercomputing 2012 Nov 12, 2012 12/12/12 12

EEEEEEEEEEEEEEEEEEEEEEE

Programming for Future

Multi-Petaflop and Exaflop Computers

aka
Finding more parallelism in existing applications

Porting an existing application to new Systems

o Convertlng to Hybrid OpenMP/MPI
|dentifying high level OpenMP loops
Using the Cray Scoping tool
Using the program library (-hwp)
NUMA effects on the XK6 node
Comparing Hybrid OpenMP/MPI to all MPI

CRAY

Using the progress engine for overlapping MPIl and computation

. Looklng at methods of acceleration

Using Cuda with OpenACC and Cuda Fortran, Visual profiler, command

line profiler, libsci being used with OpenACC

- A systematic 8proach for converting a Hybrid OpenMP/MPI

appllcatlon to OpenACC
Using OpenACC
First, let the compiler do most of the work

Usin Cra;g)at to identify the most time consuming portions of the

accelerated code

Optimizing the OpenACC code
Most optimizations will improve OpenMP code

Employing Cuda and/or Cuda Fortran in an OpenACC application

12/12/12 Supercomputing 2012 Nov 12, 2012

\
\

Back to the Futures — Combining different levels of L e .
parallelism

e Fact e Fact
* For the next decade all e Current petascale
HPC system will basically applications are not
have the same structured to take
architecture advantage of these
L Message passing between nodes arCh|teCtu res

e Multi-threading within the node — e Current — 80-90% of application

MPI will not do use a single level of parallelism,
e Vectorization at the lower level - message passing between the

cores of the MPP system

e Looking forward, application
developers are faced with a
significant task in preparing their
applications for the future

Inda

CRRANY

THE SUPERCOMPUTER COMPANY

Hybridization* of an All MPI
Application

* Creation of an application that exhibits three levels of
parallelism, MPIl between nodes, OpenMP** on the node and

vectorized looping structures

** Why OpenMP? To provide performance portability. OpenMP is
the only threading construct that a compiler can analyze
sufficiently to generate efficient threading on multi-core nodes and
to generate efficient code for companion accelerators.

CRANY

THE SUPERCOMPUTER COMPANY

CAUTION!!

e Do not read “Automatic” into this presentation, the
Hybridization of an application is difficult and efficient code

only comes with a thorough interaction with the cacciler to
generate the most efficient code and

e High level OpenMP structures

e Low level vectorization of major computational areas

e Performance is also dependent upon the location of the data.

Best case is that the major computational arrays reside on the
accelerator. Otherwise computational intensity of the
accelerated kernel must be significant

Cray’s Hybrid Programming Environment
supplies tools for addressing these issues

CRANY

THE SUPERCOMPUTER COMPANY

Three levels of Parallelism required

e Developers will continue to use MPI between nodes or sockets

e Developers must address using a shared memory
programming paradigm on the node

e Developers must vectorize low level looping structures

e While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language
will be accepted and the generated code is within a
reasonable performance range

Converting the MPI application to a Hybrid OpenMP/MPI CER AN
a p p I icati 0 n THE SUPERCOMPUTER COMPANY

Task 1 — Identification of potential accelerator kernels

e |dentify high level computational structures that account for a significant
amount of time (95-99%)
e To do this, one must obtain global runtime statistics of the application

e High level call tree with subroutines and DO loops showing inclusive/exclusive time, min, max,
average iteration counts.

e |dentify major computational arrays

e Tools that will be needed
e Advanced instrumentation to measure

e DO loop statistics, iteration counts, inclusive time

* Routine level sampling and profiling

Normal Profile — default Craypat report

Table 1:

Time$ |

100.0% |

o o°

o o°

o°

o o® o° o° o°

O O O > 00 oy WJHEH O

o o°

Profile by Function Group and Function

Time |
|
|

50.553984 |

8.540852
4.034867
3.612980
1.859449
1.666590
1.315145
0.923711
0.890751
0.719636
0.513454
0.508696
0.504152

14.487564
4.391205

3.483206
1.567285

Imb. |
Time |

.366647
.222303
.862830
.094075
.064095
.119832
.048359
.064695
.079651
.019075
.023855
.027139

- D T21L3E
.885755

.813952
.606728

Imb.

Time%

o o°

o o©

o o°

= OO0y O 0O W J 00 WwWwhkN -

o o°

o°

o°

o°

o°

Calls | Group
| Function
| PE=HIDE

6922023.0 |Total
6915004.0 |USER
| 2592000.0 |parabola
| 288000.0 |remap
| 288000.0 |riemann
| 288000.0 |ppmlr
| 288000.0 |evolve
| 576000.0 |paraset
| 864000.0 |volume
| 288000.0 |states
| 288000.0 |flatten
| 864000.0 |forces
| 500.0 |sweepz
| 1000.0 |sweepy

3512.0 |MPI
| 3000.0 |mpi alltoall
| 2.0 |mpi comm split

3502.0 |MPI_ SYNC
| 3000.0 |mpi alltoall (sync)
| 501.0 |mpi allreduce (sync)

CRRANY

THE SUPERCOMPUTER COMPANY

Normal Profile—Using “setenv PAT RT HWPC 1”

Time$

Time

Imb. Time

Imb. Time$%

Calls 0.

PAPI L1 DCM 42.

PAPI TLB DM 0.

PAPI L1 DCA 1067.

PAPI FP OPS 1808.

Average Time per Call

CrayPat Overhead Time 75

User time (approx) 9.

HW FP Ops / User time 1808.

HW FP Ops / WCT 1808.

Computational intensity 0.
MFLOPS (aggregate) 7409042.
TLB utilization 22030.
D1 cache hit,miss ratios 96.
D1 cache utilization (misses) 24.

12.4%
9.438486
0.851876
8.3%
265M/sec 2592000.0
908M/sec 419719824
048M/sec 474094
727M/sec 10444336795
848M/sec 17693862446
0.000004
.3%
782 secs 21520125183
848M/sec 176938624406
848M/sec
82 ops/cycle 1.69
08M/sec
09 refs/miss 43.028

0% hits

88 refs/miss

secs
secCs

calls
misses
misses
refs
ops
secs

100.0% Time
10.3%peak (DP)

cycles
ops

ops/ref

avg uses
misses

CRRANY

THE SUPERCOMPUTER COMPANY

Re-compiling with —hprofile_generate “pat_report—O callers”

100.0% | 117.646170 | 13549032.0 |Total

75.4% | 88.723495 | 13542013.0 |USER
| __
10.7% | 12.589734 | 2592000.0 |parabola
| ___
T.1% | 8.360290 | 1728000.0 |remap .LOOPS
| | | remap
I | | ppmlr
| __
3.2% 3.708452 768000.0 |sweepx2 .LOOP.2.11i.35

| sweepx2 .LOOP.1.11i.34
| sweepx2 .LOOPS
| sweepx2
| vhone
768000.0 |sweepxl .LOOP.2.11i.35
| sweepxl .LOOP.1.11i.34
sweepxl .LOOPS

3.663423

w
'_\
o°

3.6% | 4.229443 | 864000.0 |ppmlr

| 384000.0 |sweepx2 .LOOP.2.11i.35
| | sweepx2 .LOOP.1.11i.34
| | sweepx2 .LOOPS
| | sweepx2
| | vhone

1.852820 | 384000.0 |sweepxl .LOOP.2.1i.35
| | sweepxl .LOOP.1.1i.34
| | . ySuecEEERRRIGORS
| | sweepxl
| | vhone

'_l
()
o°

CRRANY

THE SUPERCOMPUTER COMPANY

